edge switches
ALLNET ALL8808POE
PRODUCT DESCRIPTION
- 8-Port 10/100/1000Mbps – Layer 2 Gigabit
- Full PoE support on every port
- PoE Power:
- 4x 30 watts (IEEE802.3at)
- 8x 15.4 Watts (IEEE802.3af)
- Internal power supply
- Fanless design
- 19“ Brackets included
8 Port Gigabit Full PoE Desktop-Switch, fanless
- 8-Port 10/100/1000Mbps – Layer 2 Gigabit
- Full PoE support on every port
- PoE Power:
- 4x 30 watts (IEEE802.3at)
- 8x 15.4 Watts (IEEE802.3af)
- Internal power supply
- Fanless design
- 19“ Brackets included
PRODUCT DESCRIPTION
The ALL8808POE is an 8-port 10/100/1000Mbps switch with PoE support on all ports, making it perfectly suited for the segmentation of larger networks. It is an excellent choice to supply your network with better performance and efficiency.
IEEE 802.3af Power & at over Ethernet (PoE)
The ALL8808POE supports the IEEE 802.3af PoE standard on all ports or the IEEE802.3at
PoE standard, with up to 30 watts for the connected PoE devices, on up to 4 ports. Using
PoE technology the ALL8894WMP supplies the existing LAN cabling with power. This
facilitates the installation of PoE devices such as wireless access points, IP cameras, VoIP
phones, because these devices can now be placed without any consideration of existing
power outlets.
High-Speed Networking and Jumbo Frames support
The ALL8808POE offers an excellent solution for expanding your Gigabit network. At
Gigabit speed, this product offers a high flexibility and high bandwidth for connectivity
to servers, workstations, and other connected devices. In addition, it also supports 9.6K
Jumbo Frames for better network utilization, enabling the improved transmission of large
files.
Absolutely silent
PoE switches are often equipped with noisy fans that are intended to ensure adequate
cooling. Not so the ALL8808POE – the passively cooled, fanless design ensures a completely
silent operation.
specifications
Packing List
Request a Quote
Learn More From
Frequently Asked Questions
Multimode fiber commonly comes in 50/125 μm or 62.5/125 μm core/cladding dimensions, with bandwidth capacities ranging from 200 MHz to 2 GHz, depending on the grade. Multimode systems typically support transmission distances of up to 5 km, making them suitable for short- to medium-range applications.
In contrast, singlemode fiber—usually 9–10/125 μm—offers significantly lower attenuation and effectively unlimited bandwidth, supporting links over 150 to 200 km, especially when paired with optical amplifiers and advanced transceivers.
While singlemode fiber is less expensive per meter, its associated transceivers and equipment tend to cost more than their multimode counterparts. That said, singlemode devices are generally compatible with both singlemode and multimode fiber, whereas multimode equipment works only with multimode fiber.
Let me know if you’d like this turned into a quick-reference table or visual comparison—it’d make a solid inclusion for a fiber deployment guide.
The link budget is the difference between the transmitter’s output power and the receiver’s sensitivity. This budget must account for all signal losses along the path, including:
- Fiber attenuation due to the transmission medium
- Connector losses, such as those at patch panels or equipment interfaces
- Splice losses from mechanical or fusion joints
- Link margin, which provides a buffer for unforeseen variations
The link margin typically ranges from 2–3 dB in tightly controlled environments to up to 10 dB in more variable conditions. It is designed to accommodate:
- Component aging (e.g., light sources may degrade and lose up to 3 dB over time)
- Temperature variations affecting transmitter output or receiver sensitivity (up to 3 dB may be needed for thermal fluctuations)
- Physical cable damage and repair-induced losses (usually minor, but more relevant in harsh or industrial settings)
Always design your system for worst-case scenarios to ensure reliability. However, don’t overlook the best-case condition either—some optical receivers may exhibit erratic behavior if the incoming signal is too strong.
First, verify the optical signal strength along the link. Use an optical power meter to measure the received power at the fiber’s end point. Typical transmit levels range from –8 dBm to –15 dBm, while the receiver sensitivity is around –31 dBm, giving you a link budget of approximately 16 dB. This margin supports transmission distances of up to 10 km on singlemode fiber and about 3–5 km on multimode fiber.
If the measured power falls below the receiver sensitivity, there’s a strong likelihood of issues with the installed fiber. Ideally, initial OTDR readings should have flagged such faults.
If not, inspect the patch cords currently in use for possible defects or misalignment. A frequent oversight is the use of mismatched patch cords.
Multimode fiber types are classified by the ISO/IEC 11801 standard into five main categories: OM1, OM2, OM3, OM4, and OM5. Each type differs in core size, bandwidth, supported data rates, and maximum transmission distances. Here’s a quick breakdown:

- OM3 and OM4 are laser-optimized and widely used in modern data centers.
- OM5 supports shortwave wavelength division multiplexing (SWDM), enabling multiple wavelengths over a single fiber for higher capacity.
- All OM types are backward compatible in terms of connectors, but mixing core sizes (e.g., OM1 with OM3) can cause performance issues.
