network
OSD2153P MICRO 10/100/1000Base-T to 1000Base-X BRIDGE TYPE MEDIA CONVERTER with PoE++ SOURCE
PRODUCT DESCRIPTION
- IEEE802.3at standards providing up to 30W from PSE
- Can provide up to 60W from PSE using proprietary Linear Tech LTPoE++ standard.
- Available for operation over 1 or 2 fibers.
- Powered by non-critical 50VDC supplies.
- Operates over the temperature range of -20 to +75oC
- Advanced features like Link Loss Forwarding to detect the link status of link partners either on the fiber and/or
- copper port
- Interoperates with the OSD2151 card or module
- Supports IEEE802.af/at Alternative A, and B cable wiring
OSD2153P MICRO 10/100/1000Base-T to 1000Base-X BRIDGE TYPE MEDIA CONVERTER with PoE++ SOURCE
FEATURES AND BENEFITS
- Complies with IEEE802.3i/802.3u/802.3ab10/100/1000Base-T,
- IEEE802.3z 1000Base-Lx/Sx standards.
- Supports network traffic of 100Mbps or 1000Mbps.
- Has one fixed 10/100/1000Base-T copper port and one
- SFP port which can be
- 10/100/1000Base-T,
- 100Base-
- Fx or 1000BaseLx/Sx/Zx.
- Auto MDI/MDIX.
- Can be used with either singlemode or multimode fiber over a variety of link budgets.
- Complies with the IEEE802.3af
- IEEE802.3at standards providing up to 30W from PSE
- Can provide up to 60W from PSE using proprietary Linear Tech LTPoE++ standard.
- Available for operation over 1 or 2 fibers.
- Powered by non-critical 50VDC supplies.
- Operates over the temperature range of -20 to +75oC
- Advanced features like Link Loss Forwarding to detect the link status of link partners either on the fiber and/or
- copper port
- Interoperates with the OSD2151 card or module
- Supports IEEE802.af/at Alternative A, and B cable wiring
- Supports 10KB jumbo frames
- SFP module sold separately.
APPLICATIONS
- Any network utilising a mix of copper and fiber
- Industrial IP communications
- Gigabit backbone networks
- Extremely space constrained environments
TYPICAL SYSTEM DESIGN
specifications
ELECTRICAL
- Electrical Data Interface
- IEEE802.3i/802.3u/802.3ab, 10/100/1000Base-T Ethernet
- Electrical Data Rate
- 10, 100, 1000Mbps with energy detect, auto negotiate, auto MDIX
- Jumbo Frame Support 10KB
- Optical Data Interface
- IEEE802.3z 1000Base-Lx/Sx or IEEE802.3u 100Base-Fx
- Optical Data Rate 100Mbps or 1000Mbps
- Operating Mode
- Half or full duplex for 10/100
- Full duplex for 1000
- Flow control
- Electrical Data Connector
- RJ45
- Controls
- 100 or 1000Mbps on fiber
- Link loss forwarding: on or off
- Fault detection: fiber only or copper and fiber
- PoE
- IEEE802.3af, IEEE802.3at and PoE++
- Operating Mode
- Alternative A & B (Pins 1/2, 3/6, 4/5, and 7/8)
OPTICAL
- Optical Connectors
- SFP (LC connectors for 2-fiber operation and SC for 1-fiber operation)
- SFP Options
- Short haul, long haul, single fiber operation, etc.
- Please consult OSD datasheet #1021000XX or contact OSD
PHYSICAL
- Operating Temperature Range
- -20 to +75oC
- Relative Humidity
- 0 to 95% non-condensing
- OSD2153P Power Requirements
- +46VDC to +57VDC @ 6W plus up to an extra 60W for PoE operation
- (attached powered device dependent)
- ≥52VDC recommended for PoE+ or ≥55VDC for 60W PoE
- Power Connector
- 2-way 3.5mm terminal block on the module
- Indicators
- 1x Copper Link/Activity on RJ45
- 1x Copper Speed on RJ45
- 1x PoE Enable/Disable
- 1x Power On/Off
- 1x Link Loss Forwarding Enable/Disable
- 1x SFP Link/Speed on SFP
- Optional SM Optical Link Budget
- >33dB: >100km on singlemode with 0dBm 1550nm transmitter
PHYSICAL
- Dimensions (mm)
- 90W x 58D x 49H
- Weight (kg)
- 0.3
Request a Quote
Learn More From
Frequently Asked Questions
Multimode fiber commonly comes in 50/125 μm or 62.5/125 μm core/cladding dimensions, with bandwidth capacities ranging from 200 MHz to 2 GHz, depending on the grade. Multimode systems typically support transmission distances of up to 5 km, making them suitable for short- to medium-range applications.
In contrast, singlemode fiber—usually 9–10/125 μm—offers significantly lower attenuation and effectively unlimited bandwidth, supporting links over 150 to 200 km, especially when paired with optical amplifiers and advanced transceivers.
While singlemode fiber is less expensive per meter, its associated transceivers and equipment tend to cost more than their multimode counterparts. That said, singlemode devices are generally compatible with both singlemode and multimode fiber, whereas multimode equipment works only with multimode fiber.
Let me know if you’d like this turned into a quick-reference table or visual comparison—it’d make a solid inclusion for a fiber deployment guide.
The link budget is the difference between the transmitter’s output power and the receiver’s sensitivity. This budget must account for all signal losses along the path, including:
- Fiber attenuation due to the transmission medium
- Connector losses, such as those at patch panels or equipment interfaces
- Splice losses from mechanical or fusion joints
- Link margin, which provides a buffer for unforeseen variations
The link margin typically ranges from 2–3 dB in tightly controlled environments to up to 10 dB in more variable conditions. It is designed to accommodate:
- Component aging (e.g., light sources may degrade and lose up to 3 dB over time)
- Temperature variations affecting transmitter output or receiver sensitivity (up to 3 dB may be needed for thermal fluctuations)
- Physical cable damage and repair-induced losses (usually minor, but more relevant in harsh or industrial settings)
Always design your system for worst-case scenarios to ensure reliability. However, don’t overlook the best-case condition either—some optical receivers may exhibit erratic behavior if the incoming signal is too strong.
First, verify the optical signal strength along the link. Use an optical power meter to measure the received power at the fiber’s end point. Typical transmit levels range from –8 dBm to –15 dBm, while the receiver sensitivity is around –31 dBm, giving you a link budget of approximately 16 dB. This margin supports transmission distances of up to 10 km on singlemode fiber and about 3–5 km on multimode fiber.
If the measured power falls below the receiver sensitivity, there’s a strong likelihood of issues with the installed fiber. Ideally, initial OTDR readings should have flagged such faults.
If not, inspect the patch cords currently in use for possible defects or misalignment. A frequent oversight is the use of mismatched patch cords.
Multimode fiber types are classified by the ISO/IEC 11801 standard into five main categories: OM1, OM2, OM3, OM4, and OM5. Each type differs in core size, bandwidth, supported data rates, and maximum transmission distances. Here’s a quick breakdown:

- OM3 and OM4 are laser-optimized and widely used in modern data centers.
- OM5 supports shortwave wavelength division multiplexing (SWDM), enabling multiple wavelengths over a single fiber for higher capacity.
- All OM types are backward compatible in terms of connectors, but mixing core sizes (e.g., OM1 with OM3) can cause performance issues.
