Audio video data

OSD8600S DIGITAL 4 CHANNEL VIDEO/DATA/ETHERNET MULTIPLEXER

PRODUCT DESCRIPTION

  • Uncompressed 9 bit video encoding, giving professional quality transmission
  • Fiber optic transmission of four video signals on one fiber with one RS232, one RS422/RS485 data signals and one contact closure channel all of which may be one way with the video or, optionally, full duplex
  • Optional 10/100 Base-T Ethernet bridging through the link
  • Duplex communication utilising 1000Base-X SFP transceivers that can be selected according to specific length or fiber requirements without changing the whole unit.
  • Standard unit operates on singlemode fiber while multimode version is optionally available
  • Video bandwidth of 6.5MHz, SNR >63dB
  • SFP module(s) sold separately
OSD8600S DIGITAL 4 CHANNEL VIDEO/DATA/ETHERNET MULTIPLEXER

OSD158T/OSD158R ALARM TRANSMISSION SYSTEM

FEATURES AND BENEFITS

  • Uncompressed 9 bit video encoding, giving professional quality transmission
  • Fiber optic transmission of four video signals on one fiber with one RS232, one RS422/RS485 data signals and one contact closure channel all of which may be one way with the video or, optionally, full duplex
  • Optional 10/100 Base-T Ethernet bridging through the link
  • Duplex communication utilising 1000Base-X SFP transceivers that can be selected according to specific length or fiber requirements without changing the whole unit.
  • Standard unit operates on singlemode fiber while multimode version is optionally available
  • Video bandwidth of 6.5MHz, SNR >63dB
  • SFP module(s) sold separately

APPLICATIONS

  • CCTV networks
  • Transportation networks
  • Industrial monitoring systems

TYPICAL APPLICATION DESIGN

ORDERING INFORMATION

  • Contact OSD for a full listing of available options
  • OSD8600ST Transmitter Card
  • OSD8600SR Receiver Card
  • Option C Module version
  • Option NV N Video Signals (N=2 or 4)
  • Option 2Dd 2 Duplex Data and 1 Duplex Contact
  • Option E 10/100BaseT Ethernet Interface
  • Option N Network Management System Interface
  • SFP Part Numbers
  • OSDSFP1000Lx 2-fiber 1310nm SFP Plugin Module with LC connectors for up to 20km
  • OSDSFP1000WLxA Single fiber SFP Plugin Module with an SC connector for up to 20km (TX @1310nm, Rx@1550nm)
  • OSDSFP1000WLxB Single fiber SFP Plugin Module with an SC connector for up to 20km (TX @ 1550nm, Rx @ 1310nm)

specifications

CHANNEL AVAILABILITY

  • (specify at time of order)

    Forward Path

  • Number of video channels 4
  • Number of data channels 2
  • Nmber of contact closure channels 1
  • Number of optional Ethernet interface 0 or 1

    Reverse Path

  • Number of video channels 0
  • Number of data channels 0 or 2
  • Nmber of contact closure channels 0 or 1
  • Number of optional Ethernet interface 0 or 1

ELECTRICAL

  • Input/Output Level 1.0Vpp nominal
  • Bandwidth 10Hz to 6.5MHz
  • Signal to Noise Ratio >63dB (weighted)
  • Linearity <0.7% DG <0.7o DP
  • Standard Data Interface 1 x RS232, 1 x RS422/RS485 and 1 x contact closure
  • Standard Data Rate [ DC to 400kbps on both data channels ] [ DC to >100bps on relay channel ]
  • Optional Ethernet Interface 10/100BaseT via RJ45 connector with system rate of 10Mbps
  • Data Bit Error Rate <1×10-9
  • Video Connectors BNC
  • Standard Data Connector Female 9pin D connector

OPTICAL

  • Optical Port SFP
  • SFP Options Short haul, long haul, single fiber operation, etc. ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎
  • ‎( Please consult OSD datasheets #10210000X (1000Mbps) or contact OSD )
  • Optical Connectors 2-fiber= LC, 1-fiber = SC

PHYSICAL

  • Power Requirements 9 to 35VDC or 22 to 28VAC @ 5VA
  • Dimensions (mm) [ 100W x 208D x 25H card ] [ 114W x 174D x 32H modem case ]
  • Weight 0.2kg (card), 0.7kg (modem case)
  • Operating Temperature -20 to +75oC
  • Relative Humidity 0 to 95% non-condensing
  • Chassis Current Consumption (CCC) 0.40 Amp

Request a Quote

Ready to Work Together? Build a project with us!

Learn More From

Frequently Asked Questions

Multimode fiber commonly comes in 50/125 μm or 62.5/125 μm core/cladding dimensions, with bandwidth capacities ranging from 200 MHz to 2 GHz, depending on the grade. Multimode systems typically support transmission distances of up to 5 km, making them suitable for short- to medium-range applications.

In contrast, singlemode fiber—usually 9–10/125 μm—offers significantly lower attenuation and effectively unlimited bandwidth, supporting links over 150 to 200 km, especially when paired with optical amplifiers and advanced transceivers.

While singlemode fiber is less expensive per meter, its associated transceivers and equipment tend to cost more than their multimode counterparts. That said, singlemode devices are generally compatible with both singlemode and multimode fiber, whereas multimode equipment works only with multimode fiber.

Let me know if you’d like this turned into a quick-reference table or visual comparison—it’d make a solid inclusion for a fiber deployment guide.

The link budget is the difference between the transmitter’s output power and the receiver’s sensitivity. This budget must account for all signal losses along the path, including:

  • Fiber attenuation due to the transmission medium
  • Connector losses, such as those at patch panels or equipment interfaces
  • Splice losses from mechanical or fusion joints
  • Link margin, which provides a buffer for unforeseen variations

The link margin typically ranges from 2–3 dB in tightly controlled environments to up to 10 dB in more variable conditions. It is designed to accommodate:

  • Component aging (e.g., light sources may degrade and lose up to 3 dB over time)
  • Temperature variations affecting transmitter output or receiver sensitivity (up to 3 dB may be needed for thermal fluctuations)
  • Physical cable damage and repair-induced losses (usually minor, but more relevant in harsh or industrial settings)

Always design your system for worst-case scenarios to ensure reliability. However, don’t overlook the best-case condition either—some optical receivers may exhibit erratic behavior if the incoming signal is too strong.

First, verify the optical signal strength along the link. Use an optical power meter to measure the received power at the fiber’s end point. Typical transmit levels range from –8 dBm to –15 dBm, while the receiver sensitivity is around –31 dBm, giving you a link budget of approximately 16 dB. This margin supports transmission distances of up to 10 km on singlemode fiber and about 3–5 km on multimode fiber.

If the measured power falls below the receiver sensitivity, there’s a strong likelihood of issues with the installed fiber. Ideally, initial OTDR readings should have flagged such faults.

If not, inspect the patch cords currently in use for possible defects or misalignment. A frequent oversight is the use of mismatched patch cords.

Multimode fiber types are classified by the ISO/IEC 11801 standard into five main categories: OM1, OM2, OM3, OM4, and OM5. Each type differs in core size, bandwidth, supported data rates, and maximum transmission distances. Here’s a quick breakdown:

  • OM3 and OM4 are laser-optimized and widely used in modern data centers.
  • OM5 supports shortwave wavelength division multiplexing (SWDM), enabling multiple wavelengths over a single fiber for higher capacity.
  • All OM types are backward compatible in terms of connectors, but mixing core sizes (e.g., OM1 with OM3) can cause performance issues.