Audio video data
OSD8810 DIGITAL MICRO VIDEO TRANSMITTER
PRODUCT DESCRIPTION
- Extremely cost effective
- Extends wideband video transmission to over 3km of multimode fiber and at least 30km of singlemode fiber with
- 100km optionally possible
- Performance is maintained at the same quality over all link lengths
- Plugs directly onto the camera
- Eliminates length dependant adjustments often required with coax or Cat 5 based systems
- More secure than coaxial or Cat 5 cable
- Broadcast quality true 10 bit video with 10MHz bandwidth
- Operates with the OSD8815R and OSD8865 digital receivers
- Two high quality audio channels are optionally available
OSD8810 DIGITAL MICRO VIDEO TRANSMITTER
FEATURES AND BENEFITS
- Extremely cost effective
- Extends wideband video transmission to over 3km of multimode fiber and at least 30km of singlemode fiber with
- 100km optionally possible
- Performance is maintained at the same quality over all link lengths
- Plugs directly onto the camera
- Eliminates length dependant adjustments often required with coax or Cat 5 based systems
- More secure than coaxial or Cat 5 cable
- Broadcast quality true 10 bit video with 10MHz bandwidth
- Operates with the OSD8815R and OSD8865 digital receivers
- Two high quality audio channels are optionally available
APPLICATIONS
- Surveillance links up to over 100km
- Industrial process monitoring
- Safe city CCTV system video transmission
- Broadcast links
TYPICAL APPLICATION DESIGN
specifications
ELECTRICAL
- Input Impedance 75Ω
- Input Level 1Vpp nominal
- Bandwidth 5Hz to 10MHz + 1, -3dB
- Weighted Video Signal to Noise Ratio >65dB when operating with the OSD8815R or OSD8865
- Weighted Video SNR with Audio Option >63dB when operating with the OSD8815R or OSD8865
- Differential Gain <0.7%
- Differential Phase <0.7°
- Video Connector BNC plug
OPTIONAL AUDIO CHANNELS
- Number of Channels 2
- Bandwidth 10Hz to 20kHz +1,-3dB
- Audio Input/Output impedance >10KΩ/<200Ω
- Audio Input Level 250mVrms nominal
- Audio Output Level 250mVrms nominal
- Audio Headroom 15dB
- Audio Weighted Signal to Noise Ratio >90dB at maximum level
- Audio Distortion <0.05%
- Audio Connector 3.5mm stereo socket
OPTICAL
- Transmitter Wavelength 1310 ± 30nm
- Transmitter Coupled Power
- [ -15 to -10dBm into singlemode fiber ]
- [ -10 to -5dBm into multimode fiber ]
- Optical Connector ST
PHYSICAL
- Power Requirements +9 to 35VDC or 22 to 28VAC @ 1.5VA
- Power Connector 3.5mm 2-way terminal block
- Enclosure Elliptical extrusion
- Dimensions (mm) 25 x 40 x 38L (excluding electrical and optical connectors)
- Weight 50g
- Operating Temperature -40 to +75°C
- Relative Humidity 0 to 95% non-condensing
Request a Quote
Learn More From
Frequently Asked Questions
Multimode fiber commonly comes in 50/125 μm or 62.5/125 μm core/cladding dimensions, with bandwidth capacities ranging from 200 MHz to 2 GHz, depending on the grade. Multimode systems typically support transmission distances of up to 5 km, making them suitable for short- to medium-range applications.
In contrast, singlemode fiber—usually 9–10/125 μm—offers significantly lower attenuation and effectively unlimited bandwidth, supporting links over 150 to 200 km, especially when paired with optical amplifiers and advanced transceivers.
While singlemode fiber is less expensive per meter, its associated transceivers and equipment tend to cost more than their multimode counterparts. That said, singlemode devices are generally compatible with both singlemode and multimode fiber, whereas multimode equipment works only with multimode fiber.
Let me know if you’d like this turned into a quick-reference table or visual comparison—it’d make a solid inclusion for a fiber deployment guide.
The link budget is the difference between the transmitter’s output power and the receiver’s sensitivity. This budget must account for all signal losses along the path, including:
- Fiber attenuation due to the transmission medium
- Connector losses, such as those at patch panels or equipment interfaces
- Splice losses from mechanical or fusion joints
- Link margin, which provides a buffer for unforeseen variations
The link margin typically ranges from 2–3 dB in tightly controlled environments to up to 10 dB in more variable conditions. It is designed to accommodate:
- Component aging (e.g., light sources may degrade and lose up to 3 dB over time)
- Temperature variations affecting transmitter output or receiver sensitivity (up to 3 dB may be needed for thermal fluctuations)
- Physical cable damage and repair-induced losses (usually minor, but more relevant in harsh or industrial settings)
Always design your system for worst-case scenarios to ensure reliability. However, don’t overlook the best-case condition either—some optical receivers may exhibit erratic behavior if the incoming signal is too strong.
First, verify the optical signal strength along the link. Use an optical power meter to measure the received power at the fiber’s end point. Typical transmit levels range from –8 dBm to –15 dBm, while the receiver sensitivity is around –31 dBm, giving you a link budget of approximately 16 dB. This margin supports transmission distances of up to 10 km on singlemode fiber and about 3–5 km on multimode fiber.
If the measured power falls below the receiver sensitivity, there’s a strong likelihood of issues with the installed fiber. Ideally, initial OTDR readings should have flagged such faults.
If not, inspect the patch cords currently in use for possible defects or misalignment. A frequent oversight is the use of mismatched patch cords.
Multimode fiber types are classified by the ISO/IEC 11801 standard into five main categories: OM1, OM2, OM3, OM4, and OM5. Each type differs in core size, bandwidth, supported data rates, and maximum transmission distances. Here’s a quick breakdown:

- OM3 and OM4 are laser-optimized and widely used in modern data centers.
- OM5 supports shortwave wavelength division multiplexing (SWDM), enabling multiple wavelengths over a single fiber for higher capacity.
- All OM types are backward compatible in terms of connectors, but mixing core sizes (e.g., OM1 with OM3) can cause performance issues.
